
1

3D Camera Face Detection and Pan-Tilt
Tracking

I. Experimental Objectives

1. Understanding and mastering image processing: Through the experiment, learn how

to use the OpenCV library for image capture, processing, and face detection.

2. Mastering serial communication: Through the experiment, understand how to use

serial communication to control the movement of hardware devices (such as pan-tilt

mechanisms).

3. Practicing the basic principles of computer vision: Through face detection practice,

understand the implementation of computer vision in practical applications.

4.Integrating software and hardware control: Learn how to combine software image

processing with hardware control to complete the experiment of automatic tracking and

pan-tilt control systems.

II. Experimental Content

3D camera face detection and pan-tilt tracking is achieved by using the ORBBECDaBai

depth camera to capture images and detect faces, controlling the pan-tilt camera to move with

the movement of the face.

Experimental business process:

1.Camera image capture: Use the Orrbec camera to capture real-time color image data.

2.Image processing and display: Use the OpenCV library to process the captured images

and display the processed results on the screen.

3.Face detection: Use the Haar cascade classifier to detect faces in the processed images

and draw rectangular frames in the detected face areas.

4.Pan-tilt control: Adjust the angle of the pan-tilt according to the position of the face in

the image to achieve automatic tracking.

2

III. Experimental Environment
Experimental Equipment Artificial Intelligence Experiment Box

Operating System Linux

Experimental Accessories Depth Camera

IV. Experimental Principles

1.Hardware principles

The hardware of ORBBECDaBai includes two depth cameras, an RGB camera, and a

structured light infrared projector. Depth shutter camera (scanning line by line), infrared

structured light distance measurement.

2.Algorithm principles

This experiment will detect faces in the face images captured by the RGB camera to

obtain the face detection box, and at the same time, obtain the center coordinates of the face

detection box. By mapping the center coordinates of the face detection box with the angle of

the pan-tilt movement, the angle at which the pan-tilt servo should rotate when the face

moves left and right can be obtained, and the pan-tilt can track the face and keep it consistent

with the face.

3.Related functions

blinx_face_detect_demo()

The usage of the face detection function blinx_face_detect_demo() is as follows:

blinx_face_detect_demo() is an encapsulated function. The implementation process is to

read the picture, convert the picture to RGB format and grayscale image, and call the

OpenCV's built-in face detection model file "haarcascade_frontalface_default.xml" to get the

face detection box, and draw the face detection box.

blinx_bus_stepping_motor()

The control function for the pan-tilt blinx_bus_stepping_motor() is also an encapsulated

function. It controls the rotation of the pan-tilt servo by sending a hexadecimal array through

the serial port. The array [0xFF,0xFE,0x02,0x01,0x00,0x01,0x3C,0x00,0x0D,0x0A] starts

from the 0th bit, and the fifth and sixth bits correspond to the angle value of the servo rotation.

3

For specific control of the pan-tilt servo, please refer to the related documents in (6.

Embedded Systems and Applications/11 Attitude Gyroscope Cloud Platform Control).

The entire experimental principle process is as follows:

1.Image capture and processing:

Use the Orrbec camera to capture real-time video streams and convert the captured

frames into BGR formatted images for processing.

The OpenCV library is used for image processing operations, including color space

conversion, image display, etc.

2.Face detection:

Use the Haar cascade classifier to detect faces in the images. This classifier is a model

trained based on machine learning and can quickly detect face areas in the images.

Draw rectangular frames in the detected face areas to mark the position of the face.

3.Pan-tilt control:

Calculate the offset of the face relative to the center of the image based on the detected

face position. Send control commands through the serial port to adjust the pan-tilt angle so

that the face is always in the center of the image, achieving automatic tracking.

V. Experimental Steps

1.Run Jupyter Lab

(1) Open the "Experiment" folder on the desktop, right-click on an empty space, and

click "Open in Terminal". Enter "jupyter lab" in the terminal interface;

(2) In the Jupyter Lab programming interface, select Python3 under Notebook to enter

the program editor;

(3) Right-click on the "Untitled.ipynb" new program block, and select "Rename" to

name the program with the experiment name;

(4) Enter "%load 3D Camera Face Detection and Pan-Tilt Tracking.py" in the new cell

and click the run button to load the program.

.

4

2.Importing Library Files and Functions

Import Python's standard libraries and third-party libraries. sys is used for system-related

operations, cv2 for image processing, time for controlling time delays, serial for serial

communication, pyorbbecsdk for controlling the Orrbec camera, and the frame_to_bgr_image

function in utils for converting camera frames to BGR image format.

Reference Code :

Create a new program block "3D Camera Face Detection and Pan-Tilt Tracking.ipynb"

import sys # Import system module for system operations (e.g., exiting the program)
import cv2 # Import OpenCV library for image processing and computer vision tasks
import time # Import time module for delay or timing operations
import serial # Import serial communication module for communication with external
devices
from pyorbbecsdk import * # Import the Orrbec SDK for controlling the Orrbec camera
from utils import frame_to_bgr_image #Import custom utility function to convert camera
frames to BGR image format

3.Initialize serial port and variables

Set up serial communication to control the rotation of the pan-tilt mechanism. Initialize

the value variable to 90 degrees to control the angle of the pan-tilt.

Reference Code :

Continue writing the program block "3D Camera Face Detection and Pan-Tilt

Tracking.ipynb".

data_ser = serial.Serial("/dev/user_robot", 115200, timeout=5) # Initialize serial port for
controlling the pan-tilt, baud rate set to 115200, timeout set to 5 seconds
value = 90 # Initialize global variable value for controlling the pan-tilt rotation angle, initial
value set to 90 degrees

4. Camera initialization function

Initialize the camera and configure its parameters, start the camera stream. Load the face

detection model and return the camera pipeline and face detector. If an error occurs during

initialization, print the error message and exit the program.

Reference Code :

Continue writing the program block "3D Camera Face Detection and Pan-Tilt

5

Tracking.ipynb".

Camera initialization function
def blinx_CameraInit():

try:
pipeline = Pipeline() # Initialize camera stream pipeline for obtaining image data

streams
config = Config() # Initialize camera configuration parameters
profile_list = pipeline.get_stream_profile_list(OBSensorType.COLOR_SENSOR)

Get the stream configuration list for the color sensor
color_profile = profile_list.get_default_video_stream_profile() # Get the default

video stream configuration
config.enable_stream(color_profile) # Enable the camera video stream
pipeline.start(config) # Start the camera stream
face_detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")

Load face detection model data
return pipeline, face_detector # Return the camera stream pipeline and face

detector
except Exception as e: # Catch exceptions

print("Camera initialization error:", e) # Print error message
sys.exit(1) # Exit the program

5.Get image frame function

Obtain color image frames from the camera data stream and convert them to BGR

formatted images. If acquisition or conversion fails, return None.

Reference Code :

Continue writing the program block "3D Camera Face Detection and Pan-Tilt

Tracking.ipynb".

Get image frame function
def blinx_get_frames(pipeline):

try:
frames = pipeline.wait_for_frames(100) # Wait for camera frames, timeout is 100

milliseconds
if frames is None: # If no frames are obtained, return None

return None
color_frame = frames.get_color_frame() # Get color image frame
if color_frame is None: # If no color image frame is obtained, return None

return None
color_image = frame_to_bgr_image(color_frame) # Convert color frame to BGR

formatted image
return color_image # Return the converted image

except Exception as e: # Catch exceptions

6

print("Color image capture error:", e) # Print error message
return None # Return None

6.Face detection and pan-tilt control function

Identify faces through the face detector, calculate the position of the face in the image,

and adjust the pan-tilt angle according to the position to make it follow the face movement.

Reference Code :

Continue writing the program block "3D Camera Face Detection and Pan-Tilt

Tracking.ipynb".

Face detection function, receive image and return image with detection box
def blinx_face_detect_demo(image_src, face_detector):

global value #Declare global variable
image = cv2.flip(image_src, 1) # Flip the image horizontally
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Convert the image to

grayscale
faces = face_detector.detectMultiScale(gray, 1.3, 5) # Detect faces in the image
for x, y, w, h in faces: # Iterate through all detected faces

cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2) # Draw a red rectangle
on the image

print("x:", x + w / 2) # Print the x-coordinate of the face center
if 0 <= x + w / 2 <= 270: # Check if the face is on the left side

value -= 2 # Decrease the pan-tilt angle if on the left
value = max(value, 20) # Ensure the pan-tilt angle is not lower than 20

degrees
if 380 <= x + w / 2 <= 640: # Check if the face is on the right side

value += 2 # Increase the pan-tilt angle if on the right
value = min(value, 160) # Ensure the pan-tilt angle does not exceed 160

degrees
print("value:", value) # Print the current pan-tilt angle

blinx_bus_stepping_motor(value) # Call the function to control the pan-tilt rotation
return image # Return the image with the detection box

7.Control pan-tilt rotation function

Control the rotation of the pan-tilt by sending commands through the serial port.

Reference Code :

Continue writing the program block "3D Camera Face Detection and Pan-Tilt

Tracking.ipynb".

Control pan-tilt rotation function
def blinx_bus_stepping_motor(value):

7

ddata = [0xFF, 0xFE, 0x02, 0x01, 0x00, 0x01, 0x46, 0x00, 0x0D, 0x0A] # Initialize
command data packet

ddata[5] = value # Write the pan-tilt angle value into the data packet
data_ser.write(ddata) # Send the data packet through the serial port
time.sleep(0.1) # Delay 100 milliseconds to ensure the command is sent

8.Define the main program

After initializing the camera and face detector, enter a loop to continuously obtain

images, detect faces, adjust pan-tilt angles, and display real-time images in the window. Press

the 'q' key to exit the program.

Reference Code :

Continue writing the program block "3D Camera Face Detection and Pan-Tilt

Tracking.ipynb".

Main program entry
def main():

pipeline, face_detector = blinx_CameraInit() # Call the camera initialization function
to get the camera stream and face detector

global value # Declare global variable value
while True: # Infinite loop to continuously process images

color_image = blinx_get_frames(pipeline) # Get image frames
if color_image is None: # If no image is obtained, skip this loop iteration

conti
continue

if color_image is None: # If the image is empty, return None
return None

color_image = blinx_face_detect_demo(color_image, face_detector) # Call the
face detection function to process the image

if color_image is None: # If image processing fails, skip this loop iteration
continue

cv2.imshow("Camera View", color_image) # Display the image in a window
key = cv2.waitKey(1) & 0xFF # Wait for keyboard input and return the key value
if key == ord('q'): # If the 'q' key is pressed, exit the loop

break
pipeline.stop() # Stop the camera stream
cv2.destroyAllWindows() # Close all OpenCV windows

9.Run the main program

Check if the program is running as the main module, and if so, start the main function

main to execute the main process.

Reference Code :

8

Continue writing the program block "3D Camera Face Detection and Pan-Tilt

Tracking.ipynb".

if __name__ == "__main__": # Main program entry
main() # Call the main program function

10.The effect of running the main program code is shown in the figure

below.

	3D Camera Face Detection and Pan-Tilt Tracking
	I. Experimental Objectives
	II. Experimental Content
	III. Experimental Environment
	IV. Experimental Principles
	1.Hardware principles
	2.Algorithm principles
	3.Related functions

	V. Experimental Steps
	1.Run Jupyter Lab
	2.Importing Library Files and Functions
	3.Initialize serial port and variables
	4. Camera initialization function
	5.Get image frame function
	6.Face detection and pan-tilt control function
	7.Control pan-tilt rotation function
	8.Define the main program
	9.Run the main program
	10.The effect of running the main program code is

